Image of C2C12 cells: The cells are stained with lamin B (magenta) which indicates nuclear structure, Hoechst (blue) indicating DNA, and γH2AX (yellow) indicating damage to DNA. Cells were imaged using a THUNDER Imager 3D Live Cell with a 63X/1.4 oil immersion objective.

Cell Biology Research

When your research is centered on understanding the cellular basis of human health and disease, it is critical to investigate the cells of interest in spatiotemporal and molecular detail. Consequently, microscopy is an ever-important tool in cell biology, allowing you to study your specimens in detail within their structural environment, as well as, analyze cellular organelles and macromolecules. Cell biology imaging is done with a range of light and electron microscopes. Imaging solutions offered by Leica Microsystems are designed to maximize your cell biology research.

Need Assistance?

Contact a local specialist for advice on the right cell biology system for your needs.

Challenges with cellular imaging

The challenges faced when using microscopy for cell biology research vary, as the imaging of inter- and intra-cellular events requires a range of samples that vary in size and complexity. Imaging of these events needs to be performed from the nanometer to the millimeter scale.

Additionally, the study of cells under the microscope is further influenced by whether they are live or fixed samples, as these cases pose different imaging challenges. One challenge is how to capture fast dynamic events with the right resolution. Another one, for any cellular structures or events that do not produce a natural contrast during imaging, is choosing the right fluorescent proteins, antibodies, or nucleic acid probes to use as tags for specific proteins, DNAs, and RNAs in the cell to be viewed with fluorescence microscopy.

Finding the right solution for cellular imaging

Choosing the right microscopy method is critical if you want to maximize your research output and obtain the highest quality data. Leica Microsystems offers various solutions to improve your cell biology research. These range from digital imagers that enhance daily cell culture tasks to high-end imaging solutions that enable the study of single molecules in detail, seamlessly move from fast widefield imaging to high resolution confocal imaging with just a simple click or maximize the amount of results you get from your sample.

THUNDER Imager

THUNDER Imagers provide you with a solution for advanced 3D cell culture assays, whether you want to study stem cells, spheroids, or organoids. THUNDER Imager 3D Live Cell & 3D Cell Culture meets your requirements to study cells close to their physiological state by optimizing experimental conditions, e.g., the lowest light intensity and shortest exposure times possible.

Infinity TIRF

TIRF is ideal for imaging dynamic processes and the method of choice for visualizing single molecules with super-resolution.

STELLARIS

Experience the power to see more within your cells, with enhanced image quality, the possibility to image more markers within one sample at the same time, and the capacity to make detailed observations without influencing or damaging your sample with STELLARIS confocal microscope platform.

Image of C2C12 cells: The cells are stained with lamin B (magenta) which indicates nuclear structure, Hoechst (blue) indicating DNA, and γH2AX (yellow) indicating damage to DNA. Cells were imaged using a THUNDER Imager 3D Live Cell with a 63X/1.4 oil immersion objective.
Featured image

Image of C2C12 cells

The cells are stained with lamin B (magenta) which indicates nuclear structure, Hoechst (blue) indicating DNA, and γH2AX (yellow) indicating damage to DNA. Cells were imaged using a THUNDER Imager 3D Live Cell with a 63X/1.4 oil immersion objective.

Images courtesy of Dr. Lucas Smith, Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California at Davis.

THUNDER Imager 3D Live Cell

Follow us on Instagram

Related Articles

Read our latest articles about Cell Biology Research

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments.

More Articles

Integrated Serial Sectioning and Cryo-EM Workflows for 3D Biological Imaging

This on-demand webinar explores how integrated tools can support electron microscopy workflows from sample preparation to image analysis. Experts Andreia Pinto, Adrian Boey, and Hoyin Lai present the…
Cell DIVE multiplexed image of FFPE tissue section from human colon adenocarcinoma tissue.

Multiplexed Imaging Reveals Tumor Immune Landscape in Colon Cancer

Cancer immunotherapy benefits few due to resistance and relapse, and combinatorial therapeutic strategies that target multiple steps of the cancer-immunity cycle may improve outcomes. This study shows…
Cell DIVE multiplexed image of FFPE tissue section from human invasive ductal carcinoma (IDC)

AI-Powered Hi-Plex Spatial Analysis Tools for Breast Cancer Research

Breast cancer (BC) is the leading cause of cancer-related deaths in women. Investigating the tumor microenvironment (TME) is crucial to elucidate the mechanisms of tumor progression. Systematic…
Zebrafish-embryo image captured using a THUNDER Imager Tissue and live instant computational clearing.

Improving Zebrafish-Embryo Screening with Fast, High-Contrast Imaging

Discover from this article how screening of transgenic zebrafish embryos is boosted with high-speed, high-contrast imaging using the DM6 B microscope, ensuring accurate targeting for developmental…
Transfection using the Uncommon Bio reprogramming system. Image acquired using the THUNDER Imager 3D Cell Culture with THUNDER Large Volume Computational Clearing (LVCC) applied. Image courtesy of Samuel East, Uncommon Bio.

Designing the Future with Novel and Scalable Stem Cell Culture

Visionary biotech start-up Uncommon Bio is tackling one of the world’s biggest health challenges: food sustainability. In this webinar, Stem Cell Scientist Samuel East shows how they make stem cell…
Digital microscopy simplifies documenting cell-culture results electronically while following 21 CFR part 11 guidelines for biopharma.

Introduction to 21 CFR Part 11 for Electronic Records of Cell Culture

This article provides an introduction to the recommendations of 21 CFR Part 11 from the FDA, specifically focusing on the audit trail and user management in the context of cell-culture laboratories.…
Automated Laser Microdissection for Proteome Analysis

Deep Visual Proteomics Provides Precise Spatial Proteomic Information

Despite the availability of imaging methods and mass spectroscopy for spatial proteomics, a key challenge that remains is correlating images with single-cell resolution to protein-abundance…
GLP-1 and PYY localized to distinct secretory pools in L-cells.

Cutting-Edge Imaging Techniques for GPCR Signaling

With this webinar on-demand enhance your pharmacological research with our webinar on GPCR signaling and explore cutting-edge imaging techniques that aim to understand how GPCR signaling translates…
Stripe assay performed on a THUNDER Imager Cell. Courtesy of Maria Carrasquero Ordaz, University of Oxford.

Revealing Neuronal Migration’s Molecular Secrets

Different approaches can be used to investigate neuronal migration to their niche in the developing brain. In this webinar, experts from The University of Oxford present the microscopy tools and…
Mouse brain (left) microdissected with a 10x objective (upper right). Inspection of the collection device (lower right).

Molecular Biology Analysis facilitated with Laser Microdissection (LMD)

Extracting biomolecules, proteins, nucleic acids, lipids, and chromosomes, as well as extracting and manipulating cells and tissues with laser microdissection (LMD) enables insights to be gained into…
Scroll to top