Kontakt

Bildgebung lebender Zellen

Dank der Vielzahl der entwickelten fluoreszierenden Proteine und mehrfarbigen Sonden ist es nun möglich, praktisch jedes Molekül zu markieren. Die Fähigkeit, die Proteindynamik in Vesikeln, Organellen, Zellen und Geweben zu visualisieren, hat neue Erkenntnisse darüber geliefert, wie Zellen in gesunden und krankhaften Zuständen funktionieren. Diese Erkenntnisse umfassen die räumlich-zeitliche Dynamik von Prozessen wie Mitose, Embryonalentwicklung und Veränderungen des Zytoskeletts.

Häufige Hindernisse bei der Untersuchung lebender Zellen sind jedoch Phototoxizität und Lichtschäden. Um schnelle biologische Abläufe zu erfassen, ist es wichtig, die Zellen gesund zu halten und gestochen scharfe Bilder für zuverlässige Daten zu erhalten, die frei von Artefakten sind. Die Mikroskopie lebender Zellen erfordert häufig einen Kompromiss zwischen Bildqualität und Zellgesundheit. Bei der Bildgebung müssen bestimmte Umgebungsbedingungen eingehalten werden, um Veränderungen in den Zellen zu vermeiden.

Die verschiedenen Hochleistungs-Bildgebungslösungen von Leica können diese Herausforderungen für die Bildgebung in lebenden Zellen bewältigen und neue Entdeckungen in der Zellphysiologie und -dynamik machen.

Kontaktieren Sie uns

Unsere Experten für Lösungen im Bereich Live Cell Imaging beraten Sie gern

Ihre Anforderungen an die Bildgebung von lebenden Zellen

Für die Durchführung erfolgreicher Experimente zur Bildgebung von lebenden Zellen ist der Einsatz der richtigen Plattform von entscheidender Bedeutung. Bei der Auswahl eines optischen Mikroskops für die Bildgebung von lebenden Zellen müssen folgende drei Variablen in die Überlegungen einbezogen werden: Sensorempfindlichkeit (Signal‐Rausch‐Verhältnis), Lebensfähigkeit der Probe und Geschwindigkeit der Bildaufnahme.

Für Anwendungen mit lebenden Zellen geeignete Methoden ermöglichen die Visualisierung der Dynamik, ohne Zellschäden zu verursachen, welche die Ergebnisse beeinflussen können.

Leica Microsystems bietet mit den THUNDER Imagern, der konfokalen Plattform STELLARIS sowie Mica, dem weltweit ersten Microhub System, neueste Innovationen für die schnelle 3D-Bildgebung von lebenden Zellen

Die Beobachtung lebender Zellen wird hauptsächlich mit Fluoreszenzmikroskopie durchgeführt. Weitfeldmikroskopie, die eine flexible Anregung und schnelle Erfassung ermöglicht, wird typischerweise eingesetzt, um die Zelldynamik und -entwicklung über lange Zeiträume zu visualisieren. Konfokale Mikroskopie wird typischerweise genutzt, um subzelluläre dynamische Ereignisse zu untersuchen. Multiphotonenmikroskopie nutzt für die Anregung längerwelliges Licht, wodurch das Photobleichen verringert und die Lebensfähigkeit der Zellen verlängert wird. Und schließlich kann die Fluoreszenzlebensdauer-Bildgebung (FLIM) angewendet werden, um schnelle dynamische Signalereignisse in Zellen zu untersuchen.

Inverse Mikroskoplösung DMi8 S Plattform

Das modulare inverse Mikroskop DMi8 ist das Herzstück der Plattformlösung DMi8 S. Für Anwendungsbereiche von der Routine- bis zur Lebendzellforschung bietet die Plattform DMi8 S eine Komplettlösung. Ob Sie die Entwicklung einer einzelnen Zelle in einer Schale verfolgen, mehrere Assays screenen, eine Einzelmolekül-Auflösung erzielen oder das Verhalten komplexer Prozesse untersuchen müssen – mit einem DMi8 S System sehen Sie mehr, sehen es schneller und machen das bislang Verborgene sichtbar.

Lebensfähigkeit und Dynamik der Zellen bei der Bildgebung

Leica Microsystems bietet Ihnen intelligente Innovationen für die Mikroskopie von lebenden Zellen. Unsere Lösungen unterstützen Sie dabei, eine optimale Bildqualität zu erzielen und gleichzeitig Ihre Proben zu schützen. Praktisch alle zellulären Vorgänge erfolgen in drei Dimensionen über die Zeit. Daher müssen Zellen in vier Dimensionen (XYZ und Zeit) abgebildet werden, um ein vollständiges Bild zu erhalten. Zeitraffer-Bildgebung wird verwendet, um Zellereignisse über Zeiträume von Sekunden bis zu mehreren Monaten zu erfassen. Eine wiederholte Abbildung von Zellen zu bestimmten Zeitpunkten ist ebenfalls möglich. Um die Lebensfähigkeit der Zellen während dieses Prozesses zu schützen, müssen bei der Bildgebung von lebenden Zellen Temperatur, pH-Wert und Luftfeuchtigkeit unter Kontrolle gehalten werden. Die Belichtung sollte ebenfalls minimal sein, um Phototoxizität zu vermeiden.

Leica Microsystems bietet Bildgebungslösungen, mit denen Sie Ihre Untersuchung lebender Zellen auch über lange Zeiträume optimieren können. Sie liefern den erforderlichen Bildkontrast und die erforderliche Auflösung, um die Analyse dynamischer Ereignisse zu erleichtern. Einige Leica Systeme ermöglichen Hochgeschwindigkeits-Imaging korrelierter Markierungen ohne räumliche Diskrepanz zwischen Labels zum gleichen Zeitpunkts, so dass keine wichtigen zellulären Ereignisse übersehen werden.

Konfokale Mikroskop-Plattformen STELLARIS 5 & STELLARIS 8

STELLARIS wurde von Grund auf neu konzipiert, damit Sie mehr sehen können. STELLARIS Konfokalmikroskope können mit allen Leica-Modalitäten kombiniert werden, einschließlich FLIM, STED, DLS und CRS. Mit der konfokalen STELLARIS-Plattform haben wir die konfokale Mikroskopie neu definiert, um Sie näher an die Wahrheit zu bringen.

Verwandte Artikel

Lesen Sie unsere neuesten Artikel

Das Wissensportal von Leica Microsystems bietet Ihnen Wissens- und Lehrmaterial zu den Themen der Mikroskopie. Die Inhalte sind so konzipiert, dass sie Einsteiger, erfahrene Praktiker und Wissenschaftler gleichermaßen bei ihrem alltäglichen Vorgehen und Experimenten unterstützen.

Alle artikel

Developing embryos of different species at different stages during the elongation of their posterior body axis, from left to right in developmental time. The labelled regions in red depict a region of undifferentiated cells called the tailbud, with the corresponding region generated from that tissue shaded in grey. Upper row: lamprey; middle row: catshark; bottom row, zebrafish. This figure has been adapted from the following publication: Steventon, B., Duarte, F., Lagadec, R., Mazan, S., Nicolas, J.-F., & Hirsinger, E. (2016). Species tailoured contribution of volumetric growth and tissue convergence to posterior body elongation in vertebrates. Development, 2016. 143(10):1732-41

How to Study Gene Regulatory Networks in Embryonic Development

Join Dr. Andrea Boni by attending this on-demand webinar to explore how light-sheet microscopy revolutionizes developmental biology. This advanced imaging technique allows for high-speed, volumetric…
GLP-1 and PYY localized to distinct secretory pools in L-cells.

Cutting-Edge Imaging Techniques for GPCR Signaling

With this webinar on-demand enhance your pharmacological research with our webinar on GPCR signaling and explore cutting-edge imaging techniques that aim to understand how GPCR signaling translates…
Salmonellen-Biofilme 3D-Rendering

Mikrobielle Welten erforschen: Räumliche Interaktionen in 3D Lebensmittelmatrizen

Das Micalis Institute ist eine gemeinsame Forschungseinheit in Zusammenarbeit mit INRAE, AgroParisTech und der Université Paris-Saclay. Seine Mission ist es, innovative Forschung im Bereich der…
AI-based transfection analysis (left) of U2OS cells which were transfected with a fluorescently labelled protein. A fluorescence image of the cells (right) is also shown. The analysis and imaging were performed with Mateo FL.

Leveraging AI for Efficient Analysis of Cell Transfection

This article explores the pivotal role of artificial intelligence (AI) in optimizing transfection efficiency measurements within the context of 2D cell culture studies. Precise and reliable…
AI-based cell counting performed with a phase-contrast and fluorescence image using the Mateo FL microscope.

Precision and Efficiency with AI-Enhanced Cell Counting

This article describes the use of artificial intelligence (AI) for precise and efficient cell counting. Accurate cell counting is important for research with 2D cell cultures, e.g., cellular dynamics,…
Image of confluent cells taken with phase contrast (left) and analyzed for confluency using AI (right).

AI Confluency Analysis for Enhanced Precision in 2D Cell Culture

This article explains how efficient, precise confluency assessment of 2D cell culture can be done with artificial intelligence (AI). Assessing confluency, the percentage of surface area covered,…
Intestinal organoids label with FUCCI reporter to follow cell cycle dynamics. Courtesy of Franziska Moos. Liberali lab. FMI Basel (Switzerland).

Dual-View LightSheet Microscope for Large Multicellular Systems

Visualizing the dynamics of complex multicellular systems is a fundamental goal in biology. To address the challenges of live imaging over large spatiotemporal scales, Franziska Moos et. al. present…
THUNDER image of brain-capillary endothelial-like cells derived from human iPSCs (induced pluripotent stem cells) where cyan indicates nuclei and magenta tight junctions.

Rapid Check of Live Stem Cells in Cell-Culture Inserts set in Multi-Well Plates

See how efficient imaging of live iPSC stem cells within cell-culture inserts set in a multi-well plate can be done to evaluate the cells using a THUNDER Imager. Just read this article.
An 8-color spectral unmixing result from a hyperspectral SRS (stimulated Raman scattering) dataset, showing the biochemically distinct structures of a fresh, untreated apple slice.

How to Prepare Samples for Stimulated Raman Scattering (SRS) imaging

Find here guidelines for how to prepare samples for stimulated Raman scattering (SRS), acquire images, analyze data, and develop suitable workflows. SRS spectroscopic imaging is also known as SRS…
Spheroid stained with Cyan: Dapi nuclear countertain; Green AF488 Involucrin; Orange AF55 Phalloidin Actin; Magenta AF647 CK14.

Notable AI-based Solutions for Phenotypic Drug Screening

Learn about notable optical microscope solutions for phenotypic drug screening using 3D-cell culture, both planning and execution, from this free, on-demand webinar.
Scroll to top