Science Lab

Science Lab

Science Lab

Das Wissensportal von Leica Microsystems bietet Ihnen Wissens- und Lehrmaterial zu den Themen der Mikroskopie. Die Inhalte sind so konzipiert, dass sie Einsteiger, erfahrene Praktiker und Wissenschaftler gleichermaßen bei ihrem alltäglichen Vorgehen und Experimenten unterstützen. Entdecken Sie interaktive Tutorials und Anwendungsberichte, erfahren Sie mehr über die Grundlagen der Mikroskopie und High-End-Technologien - werden Sie Teil der Science Lab Community und teilen Sie Ihr Wissen!
Multiplexed Cell DIVE imaging of Adult Human Alzheimer’s Brain Tissue labelled with 15 antibodies targeted towards markers specific to astrocytes (GFAP, S100B), microglia (TMEM119, IBA1), and Alzheimer’s-associated markers (β-amyloid and p-Tau217).

Explore Alzheimer's Spatial Proteome with Big Data

Alzheimer's disease, a genetic and sporadic neurodegenerative condition, leads to cognitive decline in mid to late life, marked by β-amyloid plaques and tau tangles. With limited treatment options,…
Pancreatic Ductal Adenocarcinoma with 11 Aerobic Glycolysis/Warburg Effect biomarkers shown – BCAT, Glut1, HK2, HTR2B, LDHA, NaKATPase, PCAD, PCK26, PKM2, SMA1, and Vimentin.

Dive into Pancreatic Cancer Research with Big Data

Pancreatic cancer, with a mortality rate near 40%, is challenging to treat due to its proximity to major organs. This story explores the complex biology of pancreatic ductal adenocarcinoma (PDAC),…
Colon adenocarcinoma and normal colon at the tumor margin. 13 biomarkers shown including Cadherin, CD3, CD4, CD8, CD20, CD31, CD45, Collagen, Caspase 9, BCL2, Beta-Catenin, Vimentin, and Smooth Muscle Actin.

Uncover the Hidden Complexity of Colon Cancer with Big Data

Colorectal cancer poses a significant health burden. While surgery is effective initially, some patients develop recurrent secondary disease with poor prognosis, necessitating advanced therapies like…
Cell DIVE multiplexed image of FFPE tissue section from syngeneic murine cancer model, 4T1.

Mapping Tumor Immune Landscape with AI-Powered Spatial Proteomics

Spatial mapping of untreated tumors provides an overview of the tumor immune architecture, useful for understanding therapeutic responses. Immunocompetent murine models are essential for identifying…
Multiplexed Cell DIVE imaging of Adult Human Alzheimer’s brain tissue section demonstrating expression of markers specific to astrocytes (GFAP, S100B), microglia (TMEM119, IBA1), AD-associated markers (p-Tau217, β-amyloid) and immune cells such as CD11b+, CD163+, CD4+, and HLA-DRA+, clustered around the β-amyloid plaques.

Spatial Analysis of Neuroimmune Interactions in Alzheimer’s Disease

Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by neurofibrillary tangles, β-amyloid plaques, and neuroinflammation. These dysfunctions trigger or are exacerbated by…
Pancreatic Ductal Adenocarcinoma imaged with Cell DIVE. Analysis done by Aivia.

A Guide to Spatial Biology

What is spatial biology, and how can researchers leverage its tools to meet the growing demands of biological questions in the post-omics era? This article provides a brief overview of spatial biology…
Multiplexed Cell DIVE imaging to characterize the spatial landscape in Human Alzheimer’s Cortical Tissue

Probing Human Alzheimer's Cortical Section using Spatial Multiplexing

Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by the progressive decline of cognitive function. Spatial profiling of AD brain may reveal cellular…
Cell DIVE image of stromal remodeling around B cell follicles of follicular lymphoma patients. Stromal cells labeled with antibodies against desmin (red), SPARC (orange), vimentin (blue), and a-sma (yellow). Extracellular matrix labeled with antibody against lumican (cyan). B cells labeled with antibody against CD20 (green). Image credit: Dr. Andrea Radtke, Center for Advanced Tissue Imaging, NIAID, NIH

Empowering Spatial Biology with Open Multiplexing and Cell DIVE

Spatial biology and multiplexed imaging workflows have become important in immuno-oncology research. Many researchers struggle with study efficiency, even with effective tools and protocols. Here, we…

AI-Powered Multiplexed Image Analysis to Explore Colon Adenocarcinoma

In this application note, we demonstrate a spatial biology workflow via an AI-powered multiplexed image analysis-based exploration of the tumor immune microenvironment in colon adenocarcinoma.
Scroll to top