Background image

ライカマイクロシステムズの顕微鏡、イメージング、分析ソリューション

当社は、画期的な光学およびデジタルソリューションのユーザーに力を与えることで、より良い、より健康的な世界を創造し、未来を形作ります。175年以上にわたり、当社はライフサイエンス研究、産業、医療、法医学、教育の分野において、市場をリードする技術で目に見えないものを明らかにしてきました。

見えないものを明らかにし、より良い、より健康的な世界を。

主な対応エリア

医療

眼科、脳外科、耳鼻咽喉科(ENT)、形成外科、そして歯科。顕微手術に必要な、あなたに最適な製品がきっと見つかります。

ライフサイエンス

ライカマイクロシステムズのライフサイエンス研究用顕微鏡は、先進的なイノベーションと微細構造の可視化、測定、分析に関する専門技術により、科学界のイメージングニーズに対応しています。

工業用顕微鏡のマーケット

稼働率を最大化し、効率的に目標を達成することは、収益の向上につながります。ライカの顕微鏡ソリューションは、サンプルの細部に至るまで詳細に観察できるだけでなく、結果を迅速かつ確実に分析、文書化、報告することができます。

[Translate to japanese:] Ivesta 3 Greenough Stereo Microscopes

Ivesta 3 グリノー実体顕微鏡

高性能で見落としなく、誰でも高いクオリティで外観検査や作業ができるとしたら?

外観検査の効率化は優先事項です。 Ivesta 3グリノー実体顕微鏡を使用すると、信頼性の高い結果と共に、目視検査とリワーク作業を最適化します。

Read More

画像分析ソフト

Aivia。 AI顕微鏡検査の未来

AI顕微鏡の未来にアクセス

Read More

Advanced Imaging – DMi8 倒立顕微鏡

DMi8倒立顕微鏡で複雑な顕微鏡ワークフローを効率化できます。

このプラットフォームを使用することで、お客様の研究条件やご予算に合わせたソリューションで、高品質のデータを確実に生成することができます。

Read More

[Translate to japanese:] Look beyond - MyVeo Headset

MyVeo オールインワン術中可視化ヘッドセット

想像の先を見る

未来の外科手術がどのようなものになるか、想像したことがありますか? 手術中の見え方、動き方、共同作業の方法を想像してみてください。

Read More

[Translate to japanese:] Ivesta 3 Greenough Stereo Microscopes
[Translate to japanese:] Look beyond - MyVeo Headset

最新の記事を読む

最新の記事を読む

ライカマイクロシステムズのサイエンスラボポータル は、顕微鏡をテーマとする科学研究や記事を提供しています。 コンテンツは、日常業務や実験で、ビギナーから経験豊富な専門家、科学者まで幅広くサポートします。

GLOW800 Augmented Reality Fluorescence used for real-time blood flow visualization in aneurysm clipping surgery

Aneurysm Clipping: Assessing Perforators in Real-time with AR Fluorescence

This article covers two aneurysm clipping cases highlighting the clinical benefits of GLOW800 Augmented Reality Fluorescence application in neurosurgery, based on insights from Prof. Tohru Mizutani,…
Prof. Fontana uses the Proveo 8 with EnFocus intraoperative OCT for his corneal surgery.

How does Real-time OCT Imaging Impact Precision in Corneal Surgery?

Corneal surgery is a highly specialized field. It requires great surgical precision to overcome challenges such as visualizing clearly the full anterior chamber, performing Descemet membrane peeling…
GLOW400 AR Fluorescence in anatomy view, image courtesy of Prof. Kondo

How to Achieve Brain Tissue Resection with GLOW400 AR

Intraoperative MRI is one form of real-time intraoperative visualization, but if more in-depth visualization to identify a tumor during surgery is wanted, intraoperative fluorescence diagnostics is…
Block-face created by automatic trimming under fluorescence. Mammalian cells of interest, stained with CellTrackerTM Green are visualized within the block-face using the UC Enuity equipped with the stereo microscope M205 FA. In the background a carbon finder grid in black is visible. All samples in the article are created by Felix Gaedke, PhD, CECAD, Cologne, Germany.

How to Automatically Obtain Fluorescent Cells of Interest in a Block-face

Block-face created by automatic trimming under fluorescence. Mammalian cells of interest, stained with CellTrackerTM Green are visualized within the block-face using the UC Enuity equipped with the…
Automated Laser Microdissection for Proteome Analysis

Deep Visual Proteomics Provides Precise Spatial Proteomic Information

Despite the availability of imaging methods and mass spectroscopy for spatial proteomics, a key challenge that remains is correlating images with single-cell resolution to protein-abundance…
These images show the microstructure of a hard metal with 10% cobalt which is used for heavy-duty tools. The large increase in magnification of the right image (compared to the left) has a risk of being outside the useful range or, in other words, empty magnification.

What is Empty Magnification and How can Users Avoid it

The phenomenon of “empty magnification”, which can occur while using an optical, light, or digital microscope, and how it can be avoided is explained in this article. The performance of an optical…
Developing embryos of different species at different stages during the elongation of their posterior body axis, from left to right in developmental time. The labelled regions in red depict a region of undifferentiated cells called the tailbud, with the corresponding region generated from that tissue shaded in grey. Upper row: lamprey; middle row: catshark; bottom row, zebrafish. This figure has been adapted from the following publication: Steventon, B., Duarte, F., Lagadec, R., Mazan, S., Nicolas, J.-F., & Hirsinger, E. (2016). Species tailoured contribution of volumetric growth and tissue convergence to posterior body elongation in vertebrates. Development, 2016. 143(10):1732-41

How to Study Gene Regulatory Networks in Embryonic Development

Join Dr. Andrea Boni by attending this on-demand webinar to explore how light-sheet microscopy revolutionizes developmental biology. This advanced imaging technique allows for high-speed, volumetric…
Multiplexed Cell DIVE imaging of Adult Human Alzheimer’s brain tissue section demonstrating expression of markers specific to astrocytes (GFAP, S100B), microglia (TMEM119, IBA1), AD-associated markers (p-Tau217, β-amyloid) and immune cells such as CD11b+, CD163+, CD4+, and HLA-DRA+, clustered around the β-amyloid plaques.

Spatial Analysis of Neuroimmune Interactions in Alzheimer’s Disease

Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by neurofibrillary tangles, β-amyloid plaques, and neuroinflammation. These dysfunctions trigger or are exacerbated by…
Image of a tartaric-acid crystal taken with polarization microscopy. Tartaric acid, a diprotic, aldaric carboxylic acid, is a naturally occurring organic compound notably found in grapes.

The Polarization Microscopy Principle

Polarization microscopy is routinely used in the material and earth sciences to identify materials and minerals on the basis of their characteristic refractive properties and colors. In biology,…

A Guide to Spatial Biology

What is spatial biology, and how can researchers leverage its tools to meet the growing demands of biological questions in the post-omics era? This article provides a brief overview of spatial biology…
Scroll to top