Neurocientífica

A neurociência frequentemente requer a investigação de espécimes complexos e desafiadores usando um microscópio para compreender melhor o sistema nervoso.

 Neuroscience-Solutions-Res-.jpg

A neurociência frequentemente requer a investigação de espécimes complexos e desafiadores usando um microscópio para compreender melhor o sistema nervoso. A Leica Microsystems oferece uma abrangente gama de soluções de aquisição de imagens, que possibilitam a superação desses desafios.

Pesquisa neurocientífica

Neurociência é um campo multidisciplinar que envolve o estudo da estrutura e funcionamento do sistema nervoso. A finalidade é compreender o desenvolvimento de processos cognitivos e comportamentais, assim como entender e encontrar terapias para desordens como o Alzheimer ou a doença de Parkinson.

O uso de técnicas de microscopia é essencial para visualizar o sistema nervoso nos níveis celular e subcelular, bem como visualizar qualquer modificação molecular dentro do contexto. Desenvolvimentos recentes na aquisição de imagens profunda de tecidos propiciaram mais percepções da função neuronal. Tecnologias emergentes, como a marcação de células genéticas e a optogenética, complementam esses desenvolvimentos.

Desafios da aquisição de imagens para a pesquisa neurocientífica

A pesquisa do sistema nervoso frequentemente exige a combinação de aquisição de imagens de alta resolução e profunda, além da visualização de seções grandes. Também é necessária flexibilidade para adquirir diferentes tipos de amostras, como células vivas, tecidos, organoides e organismos modelo.

O estudo de processos dinâmicos rápidos, como o transporte de células ou a remodelagem sináptica, requer a microscopia de alta velocidade. Um dos principais desafios da microscopia de alta velocidade é a aquisição de imagens de alta resolução e evitar, ao mesmo tempo, a saturação da fluorescência.

A pesquisa neurocientífica frequentemente envolve a aquisição de imagens de área ampla e volumétrica. A necessidade de reduzir a dispersão da fluorescência e o sinal de fundo pode dificultar a aquisição de imagens com alto contraste e resolução, o que é especialmente crucial ao se examinar a arquitetura neuronal em tecidos densos como as seções do cérebro.

Widefield THUNDER Imager

Neurônios corticais em cultura Pilha em z de 59 planos (espessura: 21 µm) Imagem de cortesia da FAN GmbH, Magdeburg, Alemanha.

Artigos relacionados

Microscopy for neuroscience research

What are the Challenges in Neuroscience Microscopy?

eBook outlining the visualization of the nervous system using different types of microscopy techniques and methods to address questions in neuroscience.
Virally labeled neurons (red) and astrocytes (green) in a cortical spheroid derived from human induced pluripotent stem cells. THUNDER Model Organism Imagerwith a 2x 0.15 NA objective at 3.4x zoomwas used to produce this 425 μm Z-stack (26 positions), which is presented here as an Extended Depth of Field(EDoF)projection.

Neuroscience Images

Neuroscience commonly uses microscopy to study the nervous system’s function and understand neurodegenerative diseases.
The role of extracellular signalling mechanisms in the correct development of the human brain

How do Cells Talk to Each Other During Neurodevelopment?

Professor Silvia Capello presents her group’s research on cellular crosstalk in neurodevelopmental disorders, using models such as cerebral organoids and assembloids.
Brain organoid section (DAPI) acquired using THUNDER Imager Live Cell. Image courtesy of Janina Kaspar and Irene Santisteban, Schäfer Lab, TUM.

Imaging Organoid Models to Investigate Brain Health

Imaging human brain organoid models to study the phenotypes of specialized brain cells called microglia, and the potential applications of these organoid models in health and disease.

Métodos de microscopia para a pesquisa neurocientífica

O estudo do sistema nervoso normalmente depende da microscopia confocal para a aquisição de imagens de alta resolução de eventos e estruturas. Para a aquisição de imagens mais profundas in vivo, é usada a microscopia multifotônica, pois a sua capacidade de usar a excitação quase infravermelha reduz a dispersão de luz, permitindo a aquisição de imagens profunda com o mínimo de invasão. A microscopia de lâmina de luz também é preferencial para amostras sensíveis à luz ou 3D. Ela reduz a fototoxicidade e, ao mesmo tempo, oferece o seccionamento ótico intrínseco e a aquisição de imagens 3D.

  • A optogenética é uma técnica que envolve o controle da atividade neural usando luz e que permite o estudo de redes neuronais específicas e sinalização de células. Ela requer a expressão de proteínas sensíveis à luz na membrana da célula neuronal. A exploração de eventos na nanoescala usando a optogenética em combinação com a vitrificação de precisão em milissegundos é uma tecnologia promissora para o estudo de pontos temporais dentro de um processo dinâmico.
  • A eletrofisiologia é o estudo das propriedades elétricas de tecidos e células e inclui o estudo das propriedades elétricas dos neurônios. A função das células nervosas e musculares depende de correntes iônicas fluindo através de canais de íons. Uma forma de investigar canais de íons é usar o clampeamento de patches. Esse método permite a investigação detalhada de canais de íons e o registro da atividade elétrica dos diferentes tipos de células, principalmente células excitáveis como neurônios.

Artigos relacionados

How did Laser Microdissection enable Pioneering Neuroscience Research?

Dr. Marta Paterlini, a Senior Scientist at the Karolinska Institute, shares her experience of using laser microdissection (LMD) in groundbreaking research into adult human neurogenesis and offers…
Mouse cortical neurons. Transgenic GFP (green). Image courtesy of Prof. Hui Guo, School of Life Sciences, Central South University, China

How Microscopy Helps the Study of Mechanoceptive and Synaptic Pathways

In this podcast, Dr Langenhan explains how microscopy helps his team to study mechanoceptive and synaptic pathways, their challenges, and how they overcome them.

Bridging Structure and Dynamics at the Nanoscale through Optogenetics and Electrical Stimulation

Nanoscale ultrastructural information is typically obtained by means of static imaging of a fixed and processed specimen. However, this is only a snapshot of one moment within a dynamic system in…
Image of murine dopaminergic neurons which have been marked for laser microdissection (LMD).

Neuron Isolation in Spatial Context with Laser Microdissection (LMD)

After Alzheimer’s disease, Parkinson’s is the second most common progressive neurodegenerative disease. Before the first symptoms manifest, up to 70% of dopamine-releasing neurons in the mid-brain…

New Standard in Electrophysiology and Deep Tissue Imaging

The function of nerve and muscle cells relies on ionic currents flowing through ion channels. These ion channels play a major role in cell physiology. One way to investigate ion channels is to use…
Scroll to top