Corporate Communications

Corporate Communications

Leica Microsystems develops and manufactures microscopes and scientific instruments for the analysis of microstructures and nanostructures.

We offer scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments. Explore interactive tutorials and application notes, discover the basics of microscopy as well as high-end technologies.

Follow us

AI-based workflow for fast rare event detection in living biological samples using Autonomous Microscopy powered by Aivia

AI Microscopy Enables the Efficient Detection of Rare Events

Localization and selective imaging of rare events is key for the investigation of many processes in biological samples. Yet, due to time constraints and complexity, some experiments are not feasible…
Cancer cells

The Role of Iron Metabolism in Cancer Progression

Iron metabolism plays a role in cancer development and progression, and modulates the immune response. Understanding how iron influences cancer and the immune system can aid the development of new…
How is microscopy used in spatial biology - Teaserimage

How is Microscopy Used in Spatial Biology? A Microscopy Guide

Different spatial biology methods in microscopy, such as multiplex imaging, are helping to better understand tissue landscapes. Learn more in this microscopy guide.
John Hamilton, Bchir, MB, FRCS, Consultant Ear, Nose & Throat Surgeon, Gloucester Royal Hospital. Dr. Hamilton during ontological surgery with his trainees.

Why 3D Microscope Visualization Enriches Surgical ENT Education

Learn about the benefits of using a Leica surgical microscope with 3D visualization for surgical ENT education.

Virtual Reality Showcase for STELLARIS Confocal Microscopy Platform

In this webinar, you will discover how to perform 10-color acquisition using a confocal microscope. The challenges of imaged-based approaches to identify skin immune cells. A new pipeline to assess…

Confocal Imaging of Immune Cells in Tissue Samples

In this webinar, you will discover how to perform 10-color acquisition using a confocal microscope. The challenges of imaged-based approaches to identify skin immune cells. A new pipeline to assess…

FluoSync - a Fast & Gentle Method for Unmixing Multicolor Images

In this white paper, we focus on a fast and reliable method for obtaining high-quality multiplex images in fluorescence microscopy. FluoSync combines an existing method for hybrid unmixing with…
Optical microscope image of salt contamination on an aluminum/silicon (Al/Si) surface. Credit: Gerweck GmbH, Germany.

Microscopic Defects in Electroplating

This free on-demand webinar shows how to identify quickly root causes of defects during electroplating of components with optical microscopy and LIBS (laser spectroscopy).

Visualizing Protein-Protein Interactions by Non-Fitting and Easy FRET-FLIM Approaches

The Webinar with Dr. Sergi Padilla-Parra is about visualizing protein-protein interaction. He gives insight into non-fitting and easy FRET-FLIM approaches.
Analysis of an aneurysm with Virtual Reality. Image courtesy of Prof. Raphael Guzman.

Digitalization in Neurosurgical Planning and Procedures

Learn about Augmented Reality, Virtual Reality and Mixed Reality in neurosurgery and how they can help overcome challenges.
Protist Paramecium (Paramecium tetraurelia) stained to show the nucleus

3D Spatial Analysis Using Mica's AI-Enabled Microscopy Software

This video offers practical advice on the extraction of publication grade insights from microscopy images. Our special guest Luciano Lucas (Leica Microsystems) will illustrate how Mica’s AI-enabled…
HeLa cells labeled with dark blue – Hoechst, Nuclei; magenta – MitoTracker Green, Mitochondria; turquoise - Bodipy, lipid droplets. Cells kindly provided by Ievgeniia Zagoriy, Mahamid Group, EMBL Heidelberg, Germany.

Precise 3D Targeting for EM Imaging - Access What Matters

Find out how the seamless cryo-electron tomography workflow Coral Cryo uses confocal super resolution to target your structure of interest more precisely.
U2OS cells labelled with SiR Actin, TMRE, CellEvent™, and DAPI; 13-hour time-lapse imaging; apoptosis-inducer staurosporine

Simplifying Complex Fluorescence Multiwell Plate Assays

Apoptosis, or programmed cell death, occurs during organism embryo development to eliminate unwanted cells and during healing in adults to rid the body of damaged cells and help prevent cancer.…
Formation of 3D spheroids; Time lapse acquisition over 72 hours

Efficient Long-term Time-lapse Microscopy

When doing time-lapse microscopy experiments with spheroids, there are certain challenges which can arise. As the experiments can last for several days, prolonged sample survival must be achieved…
Dr. Tawfik with the Proveo 8 surgical microscope.

Dr. Tawfik Shares his Expert View on Direct Horizontal Chopping in Cataract Surgery

It is estimated that nearly 28 million cataract surgery procedures are performed worldwide every year. Phacoemulsification is the most common method used to remove the cataract and chopping maneuvers…
Operating room, PROVIDO

Free Flap Procedures in Oncological Reconstructive Surgery

Free flap surgery is considered the gold standard for breast, head and neck reconstructions for cancer patients. These procedures, which enable functional and aesthetic rehabilitation, can be quite…
Superior Semicircular Canal Dehiscence (SSCD) or Minor’s syndrome.

Minor’s Syndrome Surgical Intervention by Prof. Vincent Darrouzet

Minor’s disease, also called Superior Semicircular Canal Dehiscence (SSCD) or Minor’s syndrome, is a rare disorder of the inner ear that affects hearing and balance. The disease is characterized by…

How to Choose a Microscope for Reconstructive Surgery

Plastic and reconstructive surgery requires excellent visualization to repair intricate and fine structures. Oncological reconstructive surgery procedures are among the most delicate, including breast…
Plastic reconstructive surgery with M530 OHX

Advances in Oncological Reconstructive Surgery

Decision making and patient care in oncological reconstructive surgery have considerably evolved in recent years. New surgical assistance technologies are helping surgeons push the boundaries of what…
Left-hand image: The distribution of immune cells (white) and blood vessels (pink) in white adipose tissue (image captured using the THUNDER Imager 3D Cell Culture). Right-hand image: The same image after automated analysis using Aivia, with each immune cell color-coded based on its distance to the nearest blood vessel. Image courtesy of Dr. Selina Keppler, Munich, Germany.

Accurately Analyze Fluorescent Widefield Images

The specificity of fluorescence microscopy allows researchers to accurately observe and analyze biological processes and structures quickly and easily, even when using thick or large samples. However,…

Live-Cell Imaging Techniques

The understanding of complex and/or fast cellular dynamics is an important step for exploring biological processes. Therefore, today’s life science research is increasingly focused on dynamic…

The AI-Powered Pixel Classifier

Achieving reproducible results manually requires expertise and is tedious work. But now there is a way to overcome these challenges by speeding up this analysis to extract the real value of the image…

Applying AI and Machine Learning in Microscopy and Image Analysis

Prof. Emma Lundberg is a professor in cell biology proteomics at KTH Royal Institute of Technology, Sweden. She is also the director of the Cell Atlas, an integral part of the Swedish-based Human…

A New Method for Convenient and Efficient Multicolor Imaging

The technique combining hyperspectral unmixing and phasor analysis was developed to simplify the process of getting images from a sample labeled with multiple fluorophores. This aggregate method…
Single timepoint of a drosophilia embryo, 3D object detection

Examining Critical Developmental Events in High-Definition

Extended live cell imaging of embryo development requires a delicate balance between light exposure, temporal resolution and spatial resolution to maintain cells’ viability. Compromises between the…

How to Select a Microscope for Cataract Surgery

What to consider in the selection of an ophthalmic microscope for cataract procedures. Bearing these aspects in mind will equip surgeons well for talks with manufacturer representatives. Many…
Spontaneous colon adenoma

Intravital Microscopy of Cancer

Join our guest speaker Prof Dr Jacco van Rheenen, as he presents his work on the identity, behavior and fate of cells that drive the initiation and progression of cancer.
Separation of cells based on their tracking status: A colourised binary mask of a time-lapse microscopy field of view of medium confluency with individual cells highlighted as survivors if they can be tracked since the initial movie frame (cyan), incomers if they migrated into the field of view throughout the movie (yellow) or mistracks if an error occurred in the automated trajectory reconstruction (red).

Tracking Single Cells Using Deep Learning

AI-based solutions continue to gain ground in the field of microscopy. From automated object classification to virtual staining, machine and deep learning technologies are powering scientific…
Analysis of anatomy and axon orientation of an adult mouse brain tissue with QLIPP.

Learning the Cellular Architecture from its Optical Properties

In the last 3 years, microscopists have started to use "AI based" solutions for a wide range of applications, including image acquisition optimization (smart microscopy), object classification, image…

Advancing Cellular Ultrastructure Research

Freeze-fracture and freeze-etching are useful tools for studying flexible membrane-associated structures such as tight junctions or the enteric glycocalyx. Freeze-fracture and etching are two…
Scroll to top