A Guide to Neuroscience Research

Neuroscience often requires investigating challenging complex specimens using a microscope in order to better understand the nervous system.

 Neuroscience-Solutions-Res-.jpg

Neuroscience often requires investigating challenging complex specimens using a microscope in order to better understand the nervous system. Leica Microsystems offers a comprehensive range of imaging solutions which enable you to overcome these challenges.

Introduction

Neuroscience is a multidisciplinary field involving the study of the structure and function of the nervous system. The purpose is to understand the development of cognitive and behavioral processes as well as understand and find therapies for disorders, such as Alzheimer’s or Parkinson’s disease.

The use of microscopy techniques is critical to visualize the nervous system at cellular and subcellular levels and view any molecular changes within context. Recent developments in deep tissue imaging have provided further insights into neuronal function. Emerging technologies like genetic cell labeling and optogenetics complement these developments.

Imaging Challenges for Neuroscience Research

Research of the nervous system often requires the combination of high resolution, deep imaging and visualization of large sections. You also require flexibility to image different types of samples, such as live cells, tissues, organoids, and model organisms.

The study of fast dynamic processes, such as cell transport or synaptic remodeling, require high-speed microscopy. One of the main challenges of high-speed microscopy is acquiring high-resolution images while avoiding fluorescence saturation.

Neuroscience research often involves wide-area and volumetric imaging. The need to reduce fluorescence scattering and the background signal can make acquiring images with high contrast and resolution difficult, which is particularly critical when examining neuronal architecture in dense tissues like brain sections.

Widefield THUNDER Imager

Cultured cortical neurons. Z-stack of 59 planes (thickness: 21µm). Sample courtesy of FAN GmbH, Magdeburg, Germany.

Related articles

Microscopy for neuroscience research

What are the Challenges in Neuroscience Microscopy?

eBook outlining the visualization of the nervous system using different types of microscopy techniques and methods to address questions in neuroscience.
Virally labeled neurons (red) and astrocytes (green) in a cortical spheroid derived from human induced pluripotent stem cells. THUNDER Model Organism Imagerwith a 2x 0.15 NA objective at 3.4x zoomwas used to produce this 425 μm Z-stack (26 positions), which is presented here as an Extended Depth of Field(EDoF)projection.

Neuroscience Images

Neuroscience commonly uses microscopy to study the nervous system’s function and understand neurodegenerative diseases.
The role of extracellular signalling mechanisms in the correct development of the human brain

How do Cells Talk to Each Other During Neurodevelopment?

Professor Silvia Capello presents her group’s research on cellular crosstalk in neurodevelopmental disorders, using models such as cerebral organoids and assembloids.
Brain organoid section (DAPI) acquired using THUNDER Imager Live Cell. Image courtesy of Janina Kaspar and Irene Santisteban, Schäfer Lab, TUM.

Imaging Organoid Models to Investigate Brain Health

Imaging human brain organoid models to study the phenotypes of specialized brain cells called microglia, and the potential applications of these organoid models in health and disease.

Microscopy Methods for Neuroscience Research

The study of the nervous system typically relies on confocal microscopy for high resolution imaging of events and structures. For deeper in vivo imaging, multiphoton microscopy is used, as its capacity to use near-infrared excitation reduces light scattering, enabling deep imaging with minimal invasiveness. Lightsheet microscopy is also preferred for light-sensitive or 3D samples. It reduces phototoxicity while providing intrinsic optical sectioning and 3D imaging.

  • Optogenetics is a technique that involves controlling neural activity using light and enables the study of specific neuronal networks and cell signaling. It requires the expression of light-sensitive proteins in the neuronal cell membrane. Exploring events at the nanoscale using optogenetics in combination with timed millisecond precision vitrification is a promising technology to study specific time points within a dynamic process.
  • Electrophysiology is the study of the electrical properties of tissues and cells and includes the study of the electrical properties of neurons. The function of nerve and muscle cells relies on ionic currents flowing through ion channels. One way to investigate ion channels is to use patch clamping. This method allows investigation of ion channels in detail and recording of the electric activity of different types of cells, mainly excitable cells like neurons.

Related articles

How did Laser Microdissection enable Pioneering Neuroscience Research?

Dr. Marta Paterlini, a Senior Scientist at the Karolinska Institute, shares her experience of using laser microdissection (LMD) in groundbreaking research into adult human neurogenesis and offers…
Mouse cortical neurons. Transgenic GFP (green). Image courtesy of Prof. Hui Guo, School of Life Sciences, Central South University, China

How Microscopy Helps the Study of Mechanoceptive and Synaptic Pathways

In this podcast, Dr Langenhan explains how microscopy helps his team to study mechanoceptive and synaptic pathways, their challenges, and how they overcome them.

Bridging Structure and Dynamics at the Nanoscale through Optogenetics and Electrical Stimulation

Nanoscale ultrastructural information is typically obtained by means of static imaging of a fixed and processed specimen. However, this is only a snapshot of one moment within a dynamic system in…
Image of murine dopaminergic neurons which have been marked for laser microdissection (LMD).

Neuron Isolation in Spatial Context with Laser Microdissection (LMD)

After Alzheimer’s disease, Parkinson’s is the second most common progressive neurodegenerative disease. Before the first symptoms manifest, up to 70% of dopamine-releasing neurons in the mid-brain…

New Standard in Electrophysiology and Deep Tissue Imaging

The function of nerve and muscle cells relies on ionic currents flowing through ion channels. These ion channels play a major role in cell physiology. One way to investigate ion channels is to use…

Products Related to Neuroscience Research

Human hippocampus. Proliferating neuronal progenitors marked by Ki67 (red), MCM2 (magenta), and SOX2 (green) in the developing human brain. Left: fast overview acquired in widefield. Right: high resolution scan in confocal mode. Image courtesy of Piero Rigo, PhD Student at the Francis Crick Institute, London, UK.

Mica

Mica, the world’s first Microhub, brings widefield and confocal imaging, along with AI-supported analysis, seamlessly together. All united in one sample-protecting incubator environment. Fast and easy to use, Mica enables you to visualize simultaneously up to 4 labels in widefield or confocal mode thanks to the FluoSync™ technology. Now you can generate 4x more data with 100% spatiotemporal correlation, switching from widefield to confocal without moving your sample. 

Primary cell culture from rat; Cy5 (magenta): Beta-III tubulin; Rhod (red): NG2 protein, GFP (green): Nestin protein; and DAPI (blue): nuclei.
Primary cell culture from rat; Cy5 (magenta): Beta-III tubulin; Rhod (red): NG2 protein, GFP (green): Nestin protein; and DAPI (blue): nuclei.

THUNDER Imagers

THUNDER Imagers enable you to obtain a clear view of details, even deep within an intact sample, in real time without out-of-focus blur. Their ability to acquire sharp images fundamentally changes the way you work when imaging model organisms, tissue sections, and 3D cell cultures like organoids. You can use thicker sections and image larger structures than you would with a ‘standard’ widefield microscope.

Effortless separation of GFP (green) and YFP (red) expressed in the cortex of a live mouse by capturing either two channels simultaneously or conducting a spectral emission scan and applying channel unmixing in the LAS X software.
Effortless separation of GFP (green) and YFP (red) expressed in the cortex of a live mouse by capturing either two channels simultaneously or conducting a spectral emission scan and applying channel unmixing in the LAS X software.

STELLARIS DIVE

The STELLARIS DIVE (Deep In Vivo Explorer) is the first multiphoton microscope with spectrally tunable detection. It provides maximum penetration depth and contrast for deep in vivo imaging. With the STELLARIS DIVE, you can tune for the deepest insight and finest detail, while imaging multiple markers with perfect color separation. Its high precision and sensitivity make it ideal for imaging live neurons.

Scroll to top