Science Lab

Science Lab

Science Lab

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments. Explore interactive tutorials and application notes, discover the basics of microscopy as well as high-end technologies – become part of the Science Lab community and share your expertise!
Pancreatic Ductal Adenocarcinoma with 11 Aerobic Glycolysis/Warburg Effect biomarkers shown – BCAT, Glut1, HK2, HTR2B, LDHA, NaKATPase, PCAD, PCK26, PKM2, SMA1, and Vimentin.

IBEX, Cell DIVE, and RNA-Seq: A Multi-omics Approach to Follicular Lymphoma

In a recent study by Radtke et al., a multi-omics spatial biology approach helps shed light on early relapsing lymphoma patients

Accelerating Discovery for Multiplexed Imaging of Diverse Tissues

Explore IBEX: Open-source multiplexed imaging. Join the collaborative IBEX Imaging Community for optimized tissue processing, antibody selection, and human atlas construction.
2D slice of colon cancer tissue stained with 30 markers and imaged using the Cell DIVE system. Analysis performed using Aivia 13’s new multiplex cell detection recipe and automatic clustering tool. Each phenotype denoted in a different color.

Transforming Multiplexed 2D Data into Spatial Insights Guided by AI

Aivia 13 handles large 2D images and enables researchers to obtain deep insights into microenvironment surrounding their phenotypes with millions of detected objects and automatic clustering up to 30…
Hepatocellular Carcinoma with 13 biomarkers shown – Beta-Catenin, CD3D, CD4, CD8a, CD31, CD44, CD163, DAPI, PanCK, PCK26, PD1, SMA, and Vimentin.

Understanding Tumor Heterogeneity with Protein Marker Imaging

Explore tumor heterogeneity and immune cell dynamics. See how quantitative imaging analysis reveals spatial relationships and molecular insights crucial for advancing cancer research and therapeutics.
Adult human Alzheimer’s brain demonstrating a panel of 15 markers.

The Shape of the Brain: Spatial Biology of Alzheimer’s Disease

Uncover cell identity and brain structure in Alzheimer's disease with Cell DIVE multiplexed imaging, demonstrating how spatial biology can lead to advances in therapy development for…
Co-detection of 10 extracellular matrix proteins and 3 topographical tissue landmarks by multiplex immunostaining within a single high-grade fibrous hotspot from a human hepatocellular carcinoma

In Situ Identification of Cancer Stem Cell Niches in Hepatocellular Carcinoma

Discover how multiplexed imaging technology uncovers cancer stem cell niches in Hepatocellular Carcinoma using multiplex immunodetection, revealing extracellular matrix dynamics. Explore precise…
Esophageal tissue with a squamous cell carcinoma labelled with the 4 biomarkers PanCk, DAPI, NaKATPase, and Vimentin.

Discover how Multiplexed Bioimaging can Advance Cancer Research

Explore multiplexing with up to 60 biomarkers, enabling advanced tumor imaging approaches to gather precise, spatially-resolved single-cell data that helps enhance cancer research and clinical…
Pancreatic Ductal Adenocarcinoma with 11 Apoptosis biomarkers shown – BAK, BAX, BCL2, BCLXL, Caspase9, CIAP1, NaKATPase, PCK26, SMAC, Vimentin, and XIAP.

Multiplexing with Luke Gammon: Advance your Spatial Biology Research

Learn how multiplexing imaging and spatial biology can help researchers better understand complex biological systems. In this interview, Dr. Gammon and Dr. Pointu of Leica Microsystems discuss pain…
Multi-tissue array with 4 markers shown including DAPI, NaKATPase, PanCk, and Vimentin.

Spatial Biology: Learning the Landscape

Spatial Biology: Understanding the organization and interaction of molecules, cells, and tissues in their native spatial context
Scroll to top