Science Lab

Science Lab

Science Lab

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments. Explore interactive tutorials and application notes, discover the basics of microscopy as well as high-end technologies – become part of the Science Lab community and share your expertise!
Spherical aberration describes the fact that waves which pass through the centre of the lens are refracted less than the waves which pass through the edges of the curved lens.

Eyepieces, Objectives and Optical Aberrations

This article covers the components of the eyepieces and how to adjust them correctly to suit your eyes.
Steps of Koehler Illumination

Koehler Illumination: A Brief History and a Practical Set Up in Five Easy Steps

In this article, we will look at the history of the technique of Koehler Illumination in addition to how to adjust the components in five easy steps.
Angular aperture

Collecting Light: The Importance of Numerical Aperture in Microscopy

Numerical aperture (abbreviated as ‘NA’) is an important consideration when trying to distinguish detail in a specimen viewed down the microscope. NA is a number without units and is related to the…
Convalaria

Introduction to Widefield Microscopy

This article gives an introduction to widefield microscopy, one of the most basic and commonly used microscopy techniques. It also shows the basic differences between widefield and confocal…

Optimization of the Interplay of Optical Components for Aberration Free Microscopy

Optical microscopes are used to magnify objects which are otherwise invisible for the human eye. For this purpose high quality optics is necessary to achieve appropriate resolution. However, besides…
Left: Tissue cells marked with an immunolabel (FITC) illuminated with wide-band UV excitation. Note the tissue structure with blue autofluorescence. Right: Same tissue and same immunostaining with FITC label illuminated with epi-illumination using narrow-band blue (490 nm) light. Note the increased image contrast (Ploem, 1967)

Milestones in Incident Light Fluorescence Microscopy

Since the middle of the last century, fluorescence microscopy developed into a bio scientific tool with one of the biggest impacts on our understanding of life. Watching cells and proteins with the…
Infinity port

Infinity Optical Systems

“Infinity Optics” refers to the concept of a beam path with parallel rays between the objective and the tube lens of a microscope. Flat optical components can be brought into this “Infinity Space”…
A 17th-century compound microscope (© Golub Collection – University of California, Berkeley/Steven Ruzin, Curator)

A Brief History of Light Microscopy

The history of microscopy begins in the Middle Ages. As far back as the 11th century, plano-convex lenses made of polished beryl were used in the Arab world as reading stones to magnify manuscripts.…
QTM B, 1963, the first commercial automated image analysis system for microscope images, based on a TV camera and developed by Metals Research in Cambridge, England.

50 Years of Image Analysis

Modern image analysis systems perform highly sophisticated image processing functions on images from an automated microscope and digital camera. 50 years ago, the first image analysis system was…
Scroll to top