神経科学研究

多くの場合、神経科学では神経系をより深く理解するために顕微鏡を使用して困難な試料を観察することが必要です。

 Neuroscience-Solutions-Res-.jpg

多くの場合、神経科学では神経系をより深く理解するために顕微鏡を使用して困難な試料を観察することが必要です。 ライカマイクロシステムズは、これらの課題克服を可能にする幅広いイメージングソリューションを提供しています。

神経科学研究

神経科学は、神経系の構造と機能の研究を必要とする多領域の研究分野です。 その目的は、認知と行動プロセスの発達を理解するだけでなく、アルツハイマー病やパーキンソン病などの疾患を理解し、その治療法を発見することです。

顕微鏡技術の使用は、神経系を細胞と細胞内レベルで可視化し、多様な状況におけるあらゆる分子の変化を捉えるために極めて重要です。 深部組織イメージングにおける近年の発展により、神経機能に関するさらなる洞察を可能にしました。 遺伝細胞標識と光遺伝学などの新しい技術が、これらの発展を補完しています。

神経科学研究に対するイメージングの課題

多くの場合、神経系研究では高分解能、深部イメージング、大きな切片の可視化が必要です。 また、生細胞、組織、オルガノイド、モデル生物などの様々な種類のサンプルをイメージングするための柔軟性も必要です。

細胞輸送やシナプス再構築などの高速な動的プロセスの研究には、高速での顕微鏡観察が必要です。 高速での顕微鏡観察の主要な課題の一つは、蛍光のサチュレーションを抑える一方で高分解能画像を取得することです。

多くの場合、神経科学研究では広視野でのボリュームイメージングが必要です。 蛍光散乱とバックグラウンドシグナルを低減することにより、高コントラストで高分解能な画像取得を可能にします。脳切片などの密度の高い組織の神経構造を観察する場合に特に重要になります。

Widefield THUNDER Imager

培養された皮質ニューロン。 59フレームのZスタック(厚み: 21µm) サンプル提供:FAN GmbH、マクデブルク、ドイツ。

関連記事

Microscopy for neuroscience research

What are the Challenges in Neuroscience Microscopy?

eBook outlining the visualization of the nervous system using different types of microscopy techniques and methods to address questions in neuroscience.
Virally labeled neurons (red) and astrocytes (green) in a cortical spheroid derived from human induced pluripotent stem cells. THUNDER Model Organism Imagerwith a 2x 0.15 NA objective at 3.4x zoomwas used to produce this 425 μm Z-stack (26 positions), which is presented here as an Extended Depth of Field(EDoF)projection.

Neuroscience Images

Neuroscience commonly uses microscopy to study the nervous system’s function and understand neurodegenerative diseases.
The role of extracellular signalling mechanisms in the correct development of the human brain

How do Cells Talk to Each Other During Neurodevelopment?

Professor Silvia Capello presents her group’s research on cellular crosstalk in neurodevelopmental disorders, using models such as cerebral organoids and assembloids.
Brain organoid section (DAPI) acquired using THUNDER Imager Live Cell. Image courtesy of Janina Kaspar and Irene Santisteban, Schäfer Lab, TUM.

Imaging Organoid Models to Investigate Brain Health

Imaging human brain organoid models to study the phenotypes of specialized brain cells called microglia, and the potential applications of these organoid models in health and disease.

神経科学研究における顕微鏡観察手法

一般に神経系の研究では、生命現象と構造の高分解能イメージングのために共焦点顕微鏡が使用されています。 より深部の生体内イメージングに対しては、光散乱を低減し、最小限の侵襲性によって深部イメージングを可能にする近赤外励起を使用した多光子顕微鏡が使用されます。 また、ライトシート顕微鏡も励起光にセンシティブなサンプルや3Dのサンプルに対して好まれています。 光毒性を軽減し、固有の光学セクショニングと3Dイメージングを可能にします。

  • 光遺伝学は、光を使用して神経活動を制御し、特定の神経回路網と細胞シグナル伝達の研究を可能にする技術です。 この技術には、神経細胞膜内の光感受性タンパク質の発現が必要です。 ミリ秒単位で試料を非晶質に凍結させる技術と、光遺伝学を組み合わせることで、動的プロセスにおける特定の時間においてナノスケールでの研究結果を得ることが期待されます
  • 電気生理学は、組織と細胞の電気特性に関する研究で、神経の電気特性の研究が含まれます。 神経細胞と筋肉細胞の機能は、イオンチャンネルを流れるイオン電流に依存しています。 イオンチャンネルを調査する一つの手段が、パッチクランプ法です。 この手法は、イオンチャンネルの詳細な観察、主に神経のような興奮細胞など、様々な種類の細胞電気的活動の記録を可能にします。

関連記事

How did Laser Microdissection enable Pioneering Neuroscience Research?

Dr. Marta Paterlini, a Senior Scientist at the Karolinska Institute, shares her experience of using laser microdissection (LMD) in groundbreaking research into adult human neurogenesis and offers…
Mouse cortical neurons. Transgenic GFP (green). Image courtesy of Prof. Hui Guo, School of Life Sciences, Central South University, China

How Microscopy Helps the Study of Mechanoceptive and Synaptic Pathways

In this podcast, Dr Langenhan explains how microscopy helps his team to study mechanoceptive and synaptic pathways, their challenges, and how they overcome them.

Bridging Structure and Dynamics at the Nanoscale through Optogenetics and Electrical Stimulation

Nanoscale ultrastructural information is typically obtained by means of static imaging of a fixed and processed specimen. However, this is only a snapshot of one moment within a dynamic system in…
Image of murine dopaminergic neurons which have been marked for laser microdissection (LMD).

Neuron Isolation in Spatial Context with Laser Microdissection (LMD)

After Alzheimer’s disease, Parkinson’s is the second most common progressive neurodegenerative disease. Before the first symptoms manifest, up to 70% of dopamine-releasing neurons in the mid-brain…

New Standard in Electrophysiology and Deep Tissue Imaging

The function of nerve and muscle cells relies on ionic currents flowing through ion channels. These ion channels play a major role in cell physiology. One way to investigate ion channels is to use…
Scroll to top